

International Journal of TechnoChem Research

ISSN:2395-4248

www.technochemsai.com Vol.03, No.02, pp 217-225, 2017

Study of R Peak Detection Techniques

Amana Yadav¹, Naresh Grover²

^{1,2}Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India

Abstract : Heart disease is one of the trivial issues regarding health problem over the last few decades in India. Various techniques and approaches have been adapted with still-ongoing modifications and researches to monitor and analyze ECG signals on a beat-to-beat basis. Majority of research revolves around arrhythmia classification, heart rate monitoring and blood pressure measurements which require highly accurate assessments of rhythm disorders, so accurate QRS detection methods in particular efficient R peak detectionis very important to be utilized. There have been proposed many approaches or methods of R peak detection to analyze the ECG signals in past few years. Most recent and efficient techniques of R peak detection have been reviewed in this paper. **Keywords :** ECG;EKG; QRS complex; Rpeak andANN

1. Introduction

An electrocardiogram (ECG or EKG) also known as heart waves which measures the heart'selectrical activity over the time with respect to different reference planes. To analyze the heart problems a very popular method used is ECG. Every heart contraction produces an electrical impulse that can be recorded fairly easily with surface electrode on chest and limbs. The heartbeat produces a series of waves with a time-variant morphology called the rhythm of the heart in terms of bpm may be easily estimated by counting the readily identifiable waves. The electrocardiogram ECG is a part of bioelectric signal, which provides important and relevant information about the heart state. Based on the difference in position, chest configuration, anatomy of the heart, age, size, relatively body weight and various other factors, ECG of every person is different.Physicians all over the world are using ECG to detect or anomalies

Electrical heart activity is depending on re-polarization and depolarization of myocardial cells. The cardiac cycle starts in the sinoatrial node (natural pacemaker) flowing through the atriums and goes down throw the ventricles and generating the atrium contraction. Finally depolarization then propagates to the ventricles and reaches the Purkinje fibers and re-polarization of the heart tissue occurs.

Fig.1A normal ECG signal, consists of a P wave, a QRS complex and a T wave

Clinical importance of ECG morphology

1.1 ECG Waveform:

Each beat is consists of three different waves, P wave (atrial depolarization), QRS (ventricular depolarization) and finally T wave (ventricular repolarization). In the ECG signal, these three waves are continuously repeated, representing heartbeats and clinical status of the activity of heart over the time. The ECG voltage level fall in the range 0.05 to 5mV and the frequency components of the ECG signals lies in the band 0.05to 100Hz for a normal subject.

1.2 Amplitude:

P-wave: represents the contraction of the atria - 0.25 mV

R-wave — 1.60 mV

Q-wave — 25% R wave

T-wave — is the relaxation of ventricles 0.1 to 0.5 mV

QRS complex: the current generated when the ventricles depolarize that results in contraction of the right and left ventricles.

S1.	Parameter	Amplitude	Time
no.	Points	(mV)	duration(msec)
1	P wave	0.1-0.2	60-80
2	PR-segment	-	50-120
3	P-R	-	120-200
4	QRS	-	80-120
5	ST-segment	-	100-120
6	T -wave	0.1-0.3	120-160
7	S-T	-	320
8	R-R	-	400-1200

Table1:Amplitude and time intervals between different segments of ECG

Heart rate of a normal person lies in between 60 to 100 beats/minute. Any change in the heart rate is called Arrhythmia whichcan bebroadly classified in two categoriesbased on R-R interval i.e.Bradycardia and Tachycardia. If heart rate is slow or below 60 beats/minand the distance RR> 1.2s during activity then Bradycardia occurs and if the heart rate is high or above 100 beats/min and the distance RR <0.6s,this indicates a disorder called Tachycardia.

QRS complex is having most of the energy of heartbeats. So, an accurate determination of the QRS complex is essential for ECG analysis, in particular, accurate and efficient R peakdetection in the analysis of computer-based ECG. As R peak has higher amplitude than other portions of the ECG signal hence R peak detection is easier than others. In most of the R Peak detection algorithms there are three differentiated stages: First stage is carried out the data acquisition process. In this process the MIT-BIH database is considered as a reference for ECG signals. Second is preprocessing stage where different techniques are applied to the signal to remove the noise and any existing artifactand the third stage is suppression stage which is used to suppress the waves in ECG signal except the R-peaks and labeling them with their time of occurrence.

2. R peak detection methods

R peak detection techniques have been investigated for several decades. Many techniques related to this area of research for R peak detection have been proposed for accurate and fast ECG feature extraction. There are various methods of R peak detection. Some recent and efficient techniques are reviewed and discussed in the following sections:

- Pan and Tompkins.
- Wavelet Transform.
- Empirical Mode Decomposition
- Hilbert-Huang Transform

- Fuzzy logic systems.
- Artificial neural networks.

2.1 Pan and Tompkins

Pan and Tompkins (PT) is verypopular algorithm for R peak detection. It is also known as the low-pass differentiation algorithm (LPD). In this algorithm QRS complex is detected depending on Slope, amplitude and width. The QRS detection technique is divided in three different stages: linear digital filtering, non-linear transformations, and decision rule algorithms. In the first step algorithm passes the signal through band pass filter cascaded into a low-pass and a high-pass filter configuration. The low-pass filter is used to limit the operating range of an ECG signal and also to reduce higher frequency noise effects while the high-pass filter is used to highlight the onset of each QRS complex[1]. The band-pass filter reduces undesired interferences such as influence of the muscle noise, the baseline wander, the power line interferenceand frequency noise impacts. After filtration by an analog band-pass filter the signal is passed through an A/D converter at a sampling frequency of about 200 Hz. Now to marks all R peaks of the ECG signal the resultant signal of previous stage is then passed through a set of thresholds. Then output of the band-pass filter goes to differentiation element providing complex slope information.

Then to make all data point positive the signal is squared point by point, which intensifies the slope of the frequency response and helps to detect false positives caused by higher than usual T waves. Finally a sliding window integrator is used in order to obtain the information about slope and width of the QRS complex. In the last step two sets of thresholds are adjusted. The highest peak of these two thresholds is considered as an R peak. After identifying the peak, threshold adaptation can be done depending on the amplitude of the peak and this most important task of the decision rule. If we consider a larger intervals that may not detect some signal peaks and if we consider smaller onethat would detect too many peaks. In a certain time interval if the higher threshold is unable to detect he peak in this case lower threshold is used and to identify peakwhich has been lost, the algorithm has to search back intime. When a new peak is identified and it exceeds the high threshold then this peak is considered as asignal peak otherwise considered as a noise peak.[2]

2.2 Wavelet Transform

Wavelets are mathematical functions having finite oscillatory nature which makes them useful in real life situations where the signals are not stationary. It is a mathematical tool which decomposes a signal into basic functions which are known as wavelets. The Signals decomposed into a set of orthogonal waveforms localized both in time and frequency domains. Wavelet transform is calculated separately for different segments of the time-domain signal at different frequencies resulting in Multi-resolution analysis or MRA[1]. The time and frequency resolution product is constant in this analysis. Thus it provides a feature of giving good frequency resolution and poor time resolution at low frequency whereas good time resolution and poor frequency which makes it excellent for signals having low frequency components for long durations and high frequency components for short durations. The wavelet transform has recently emerged as one of the most dominant tools for analyzing challenging signals across a variety of areas in engineering and medicine [3].

Wavelet transforms are mainly of two types: Continuous wavelet transforms (CWT) and Discrete Wavelet Transforms (DWT). DWT can be used to extract the features of ECG to complete proper classifications. There are two types of filters, a low pass filter (LPF) and a high pass filter (HPF) which are used in Discrete Wavelet Transform (DWT) to decompose the signal into different scales. Approximation is the output coefficients of the LPF and the Detail is output coefficients of the HPF. For second-level decomposition the Approximation coefficient can be again sent to the Low and High pass filter of the next level. In this way we can estimate the approximation and detail coefficient and breaks down the signal into its different components at the different levels of scales.

Specific details of signal are selected to detect the R peaks. Generally R peak has the highest amplitude in the ECG signals. Several methods of R Peak detection have been designed to trace non-stationary ECG signals which are based on the Multi Resolution wavelet transform. The wavelet transforms of some ECG signals cannot perform accurately due to serious baseline drift, high frequency noise and artifacts. Baseline drift is of main concern during R peak detection which gets removed by composing and decomposing the ECG signal in DWT.

ECG Records obtain from the MIT-BIH arrhythmia database is dual channel ECG signal which is filtered by a band pass filter. To make the analysis of ECG signal easier in different frequency ranges, it is decomposed at different levels of scales with the help of wavelet transform. Then the maxima of the absolute of the DWT which exceeds the given threshold for each scale can be located. Multi level wavelet decomposition can be performed using DWT. Zero crossings indicate the characteristics waveforms of ECG. Based on the wavelet transform R peak is detected by using filter. Peak that corresponds to a R wave within the search window is find using maximums and minimums in the search window. Then fixed an adaptive threshold value less than the value of Premature Ventricular Contraction (PVC) and greater than that of R waves.Once we find the PVCs they are eliminated. This adjusts the signal quality changes and the need for manual adjustments for different patients is eliminated. Adaptive threshold algorithm uses the first wavelet to search the maximums and minimums and to estimate the wavelet amplitude of the normal R waves.

2.3 Empirical Mode Decomposition

The new nonlinear technique, called Empirical Mode Decomposition (EMD) method has been first designed by N. E. Huang et al. This technique is introduced for analysis of nonlinear and non-stationary signals. The key part of this method is that it breaks down any complicated data set into series of Intrinsic Mode Functions (IMFs), through a sifting process. Since the decomposition is based on the oscillations in signals at a very local level in time scale, so it is applicable to nonlinear and non stationary processes. The major advantage of this approach is that the signal is used itself to derive the basic functions so this decomposition method is an adaptive and highly efficient. It also reduces ECG-ridden noise by filtering all undesired decomposed fragments so this procedure is an adaptive filtering.

The first IMFs can sift out the noise and preserve the QRS content with respect to other signal components [4]. So SNR is improved by first IMFs. The length of the signal cannot determine experimentally though produced IMFs count is directly proportional to the signal length. Trial-and-error methodologies are applied for the selection criteria of IMFs.

An IMF is a function that satisfies two conditions

- a. Equal number of zero crossings and extrema or at most differed by 1.
- b. b.At any point, the mean value of the envelope defined by minima and maxima, being symmetric with respect to zero.

The high frequency or fast oscillations are represented by the lower order IMFs andlow frequency or slow oscillations are represented by upper order IMFs. QRS region is the high frequency component of ECG signal. Hence lower order IMFs can be combined together to reconstruct the signal which highlights QRS region over the other waves and low frequency noises like baseline drift due to respiration etc [5].

The algorithm is simple and consists of three blocks: Band-Pass Filter, Empirical Decomposition signal, sum the first three Intrinsic Functions Mode IMFs, take its absolute valuea(t), retain the amplitudes larger than threshold, and finally, find the position of the maximum of a segment of time duration tR starting from the first non-zero value. Now the first R-peak is detected. Similarly, find all other R-peak positions are collected and find whether the peak is positive or negative until the end of a(t) is reached. This algorithm consists of at least nine steps with more than a few specific equations for extraction.

2.4 Hilbert Transform

Hilbert transform is a threshold detection scheme which is very important to distinguish and to identify the R-peaksin ECG signals. The threshold value cannot beconstant for all ECG signals so it requires special attention. It should be defined with apropos to the ECG signal whose R peaks are to bedetected [6].

The ECG signal must be filtered and represented in such way so that the peak detection processyields efficient results even in the presence of noise within certain tolerable limits [7]. SoHilbert Transform is appropriate for this purpose. The Hilbert transform of a real-time function f(t) is

$$H\{f(t)\} = -\frac{1}{\pi} \int_{-\infty}^{+\infty} f(\tau) \frac{d\tau}{\tau - t} = -\frac{1}{\pi t} * f(t) \quad (\qquad (1)$$

Equation(1) shows that this transformation does not change the independent variable so the output F(t) is also a function of t and it is a linear function of f(t) also. Convolution between f(t) and $1/\pi t$ is applying to obtained F(t)

$$F(t) = \left(\frac{1}{\pi t}\right) * f(t)$$
⁽²⁾

F(t) and f(t) together create a strong analytic signal which can be written with amplitude and phase. The analytic signal is expressed as

$$y(t) = f(t) + jF(t)$$
 (3)

 $F\{f(t)\} = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} d\omega = F(j\omega)$ (4)

Applying the Fourier Transform we have

$$F{H{f(t)}} = jsgn(\omega)F(j\omega)$$
(5)

Where sgn represents sign function. As this is an odd transformations in the output of this transform, dominant peaks are detected at zero-cross points in ECG signal .Hilbert transform of the function f(t) represents its harmonic conjugate and both are orthogonal to each other.

This algorithm consists of two stages: first is filtering to remove the noise from ECG signals without affecting the data present in the signal and second stage is decision thresholding followed by the R-peak detection procedure. As the data is primarily located up to 60Hz, hence the data is band-pass filtered up to 60 Hz then to obtain complex signal Hilbert Transform is applied and enhanced signal is obtained which is used for efficient peak detection. In second stage, set the initial value of threshold then the signal values above threshold determines. Nowcalculate the number of peaks in the signal and repeat the last step until the new peak count does not exceed or is equal to the earlier counted peaks. Determine the sample with highest amplitude in each group then consider each detected peak and search for a sample around the peak, on either side with some suitable and appropriate leeway, with amplitude greater than that of the detected peak[8]. By combining all the peaks, construct a signal which represents the R peaks of the given ECG signal.

2.5 Fuzzy Logic Systems

FLS gives the method of reasoning that resembles human reasoning.FLS has improved decision rules of judgment, since it involves all intermediate possibilities between digital values YES and NO. Fuzziness concepts have enrolled the depiction of possibilities among "yes" and "no" decisions through membership functions and decision rules [9].

The fuzzy method is especially useful in complicated medical situation where variables and diagnostic rules are in large number. For better automated analysis check, modify, add and delete every fuzzy variable is very easy. Main characteristic of parallel reasoning guarantees about final decision will be dependent on every possible conclusion regarding beat/rhythm labeling This is a significant advantage over more deterministic algorithms, and permits multi conclusions to exist which are common in clinical practice [10]. If the medical situation is very complicated and input variables are high then rule frame consist on a very high dimensional support.

Fuzzy-based classification system first normalized the raw ECG signals, preprocessed the signals and then disintegrated into smaller number of frequency components. Everyfrequency components is related to ECG signal features. Therefore the entire decomposed features are classified into a set of pre-defined categories. Input features on the decision process are first quantified which is themain part of interception. Generally membership functions and the definition of rules in knowledge base are chosen appropriately to undergo iterative adjustment in terms of fuzzy variable

2.6 Artificial Neural Networks

An Artificial neural network is system in which various neurons are connected to each other. To classify the desired outputsANN is trained based on particular input. After we present the inputsand corresponding targets to the Neural Network, a structure compares the emerging output with the desired target and then adjusts the weights inside the network that store data gained from training sets until a match occurs. The stored empirical expertise in ANN which is based on training sets can be used to make judgment whenever needed. Once the network is trained by using specified input parameters the network can be made capable to do judgment through supervised training and inter neuron connection known as synaptic weights to give the best results.

Single-layer feed-forward network, matrix-vector input, and multi-layer feed-forward network are neuron models and architectures used in ANN and several training algorithms such as backpropagation, conjugate gradient algorithm, and Levenberg-Marquardt can be used to trained the network structure. Thestructure of Back-propagation network has three layers. There are 10 neurons in 1st and 2nd layer and one neuron in 3rd layer. First two layers used Tan-Sigmoid transfer function and 3rd layer used a linear function.

This structure is used to detect the R-peak in ECG Signal. If the r peak is present then network gives the output 1, otherwise gives 0. The sampling rate of the recorded MIT-BIH arrhythmia database is 360Hz. The samples or some specific features of the beat can be used as the input data of ANN. Features of each sample are firstly extracted to reduce the neural network size by using a function called Features Extractor. The inputs of feature extractor are the number of sample n and the ECG signal. Amplitude, RR interval, duration, differentiation, zero-crossing flag and first element flag are the 6 input used to design the architecture.

Fig.2 Structure of Artificial Neural Network

Each layer contains aweight matrix, a bias vector and an output vector which are represented by W, b and a respectively.

Where

IW = input layer weight and

LW= hidden layer weight.

The wa, bm, n represents weight for the connection link between layer b to layera. If thenumber of input neuron is m, and the inputs are scaled to lie in the region from 0 to 1, a network with only one hiddenlayer and 2m+1 neurons in this layer can exactly map these inputs to the outputs [11].

It is a challenging task to choose the number of neurons in hidden layer. If the number of neuron is too large then the memory is distributed over large number of weights. But if the number is toosmall, the network cannot make generalization when presented with slightly different inputs. When the output is not satisfactory, one more time thenetwork is trained to reduce the difference between desired output and actual

output. The Preprocessing were used before training the network which normalize the inputs to make training smoother and faster.

3. Conclusions

After completion of above mentioned review, it may be concluded that appropriate R Peak detection techniques with sustained accuracy must be used to detect the type of arrhythmia. In this review we have studied the performance of six R peak detection techniques, so anyone can use this review as a basis for their work and then start their work.

Accurate R peak detection can be achieved using Pan-Tomkins algorithm After comparing with other methodologies, implementation of this algorithm could be simple, but as this method uses the squaring function, so if there is a noise in the signal then that might be increased and could be replaced with a rectification stage. DWT does not follow each physiological temporal variation hence it gives stable features to morphology variations and provides simple implementation, consistency and moderate accuracy but it suffers from high mathematical complexity and low prediction.

Study reviews that Hilbert Transform is a strong technique for frequency-domain analysis than FFT and DWT techniques. Therefore to asses low and high frequency contents of an ECG signals Hilbert Transform is highly recommended. Hence it can be concluded that to obtain the desired R Peak detection more than one analysis technique must be combined and implemented.

References

- 1. Rami J. Oweis, Basim O. Al-Tabbaa, Irbid, Jordan "QRS Detection and Heart Rate Variability Analysis: A Survey" *Biomedical Science and Engineering*, February 17, 2014, Vol. 2, No. 1, 13-34.
- 2. Christos Pavlatos, Alexandros Dimopoulos, G. Manis and G. Papakonstantinou "Hardware implementation of Pan & Tompkins QRS detection algorithm1" funded by the *European Social Fund and particularly the Program*, 2003 "Pened".
- 3. Addison, P. S. The illustrated wavelet transform handbook: introductory theory and applications in *science, engineering, medicine and finance*, CRC Press, 2010.
- 4. Tang, J. T., Yang, X. L., Xu, J. C., Tang, Y., Zou, Q., & Zhang, X. K., "The Algorithm of R peak detection in ECG based on empirical Mode Decomposition In Natural Computation", 2008. ICNC'08. *Fourth International Conference* on Vol. 5, pp. 624-627. IEEE.
- 5. Pal S., and MitraM.," QRS Complex Detection using Empirical Mode Decomposition based Windowing Technique", *International Conference on Signal Processing and Communications* (SPCOM), 2010, pp. 1-5.
- 6. Kohler B.U., HennigC., and OrglmeisterR. "The principles of software QRS detection" *IEEE Eng. Med. Biol. Mag*, 2002, vol. 21, no. 1, pp. 42-57.
- 7. Wilson J.D., GovindanR.B., Hatton J.O., Lowery C.L., and PreisslH., "Integrated approach for fetal QRS detection," *IEEE Transactions on Bio-Medical Engineering*, Sep. 2008, vol. 55, pp. 2190-7.
- 8. Kohli Simranjit Singh, Makwana Nikunj, Mishra Nishant, Sagar Balwalli "Hilbert Transform Based Adaptive ECG R-Peak Detection Technique" *International Journal of Electrical and Computer Engineering (IJECE)*, October 2012, Vol. 2, No. 5, pp. 639~643 ISSN: 2088-8708
- 9. Upasani, D. E., &Kharadkar, R. D. "Automated ECG Diagnosis" IOSR Journal of Engineering Vol.2(5), pp: 1265-1269, May. 2012. (IJACSA) *International Journal of Advanced Computer Science and Applications*, December 2010, Vol. 1, No.6.
- 10. Zong W, and Jiang D., "Automated ECG rhythm analysis using fuzzy reasoning", *Computers in cardiology*,1998,vol. 25, pp. 69-72.
- 11. Hassoun M. H. Fundamentals of Artificial Neural Networks, *MIT* presss.
- 12. Acharya U R, SubbannaBhat P, Iyengar S S, Rao A and Dua S, "Classification of heart rate using artificial neural network and fuzzy equivalence relation", *Pattern Recognit*, 2003, vol. 36, pp. 61–68.
- 13. Benitez, D. S., Gaydecki, P. A., Zaidi, A., & Fitzpatrick, A. P. "A new QRS detection algorithm based on the Hilbert transform". In *Computers in Cardiology 2000*, pp. 379-382, IEEE.
- 14. Bonnemeier, H., Wiegand, U. K., Brandes, A., Kluge, N., Katus, H. A., Richardt, G., &Potratz, J. "Circadian profile of cardiac Journal of cardiovascular electrophysiology",2003, 14(8), 791-799.

- 15. Chia-Hung Lin, Yi Chun Du, Tainsong Chen, "Adaptive wavelet network for multiple cardiac arrhythmias recognition", *Science Direct, Expert Systems with Applications*, pp 2601-2611,
- 16. Clifford, G. D., &Azuaje, F. "Advanced methods and tools for ECG data analysis", 2006, pp. 55-57. *London: Artech house.*
- 17. Cohen K P, Tompkins W J, Djohan A et al. "QRS detection using a fuzzy neural network".*IEEE-EMBC and CMBEC*,CardiovascularSystem189-190,1995, DOI 10.1109/IEMBS.1995.575064
- 18. Engelse, W. A. H., & Zeelenberg, C. "A single scan algorithm for QRS detection and feature extraction". *Computers in cardiology*,1979, 6(1979), 37-42.
- 19. Fira, C. M., &Goras, L. "An ECG signals compression method and its validation using NNs". *Biomedical Engineering, IEEE Transactions* on, 2008,55(4), 1319-1326.
- 20. SelvakumarG., BoopathybaganK., "An Efficient QRS Complex Detection Algorithm using Optimal Wavelet", Proc. of the 6th WSEAS Int, MAY 2005
- 21. Gordan Cornelia, ReizRomulus, "ECG signals processing using Wavelets", *IEEE, proceedings of the fifth laserd International conference*, May 2005.
- 22. Gupta, K. O., &Chatur, D. P. "ECG Signal Analysis and Classification using Data Mining and Artificial Neural Networks". *Int. J. Emerg. Technol. Adv. Eng*, 2012, 2, 56-60.
- 23. Xing H., and Huang M., "A New QRS Detection Algorithm Based on Empirical Mode Decomposition," The 2nd *International Conference on Bioinformatics and Biomedical Engineering, ICBBE* 2008, pp. -693-696.
- 24. Slimane Hadj, Z. E., &Naït-Ali, A. "QRS complex detection using Empirical Mode Decomposition". *Digital Signal Processing*,2010, 20(4), 1221-1228.
- 25. Pan J. and Tompkins W.J., "A real-time QRS detection algorithm", *IEEE Trans. Biomed. Eng.*, 1985, vol. 32, 230–236.
- 26. Jadhav, Nalbalwar S. M., S. L., &Ghatol, A. A. "Modular neural network based arrhythmia classification system using ECG signal data". *International Journal of Information Technology and Knowledge Management*, 2011, 4(1), 205-209.
- 27. Jaswal, G., Parmar, R., &Kaul, A. "QRS Detection Using Wavelet Transform" *International Journal of Engineering and Advanced Technology* (IJEAT)2012.
- 28. NarayanaK.V.L., Bhujanga, RaoA., "Wavelet Based QRS Detection Using MATLAB" Innovative Design and Engineering ISSN
- 29. ZhengLi.C., & Tai, C."Detection of ECG characteristic points using wavelet transforms" *Biomedical Engineering, IEEE Transactions* on, 1995,42(1), 21-28.
- 30. Velasco M. B., Weng B., and BarnerK. E., "ECG signal denoising and baseline wander correction based on the empirical mode decomposition," *Comput.Bio.Med.*,2008,38:1-13.
- 31. Manikandan, M. S., &Soman, K. P. "A novel method for detecting R-peaks in electrocardiogram (ECG) signal". *Biomedical Signal Processing and Control*, 2012, 7(2), 118-128.
- 32. Messaoud, MessaoudM. B., KachouriA. and SellamiF., "Fuzzy logic based system for classification of atrial fibrillation cardiac arrhythmias", *13th IEEE International Conference on Electronics, Circuits and Systems, ICECS '06*, 2006, pp. 347-350.
- 33. AlfaouriMikhled and DaqrouqKhaled "ECG Signal Denoising By Wavelet Transform Thresholding", *American Journal of Applied*, 2008,5 (3): 276-281, ISSN 1546-9239
- 34. MIT–BIH Arrhythmia Database Directory, Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, July1992.
- 35. Nouira, I., Abdallah, A. B., Bedoui, M. H., &Dogui, M. "A Robust R Peak Detection Algorithm Using Wavelet Transform for Heart Rate Variability Studies", *International Journal on Electrical Engineering and Informatics*, September 2013, Volume 5, Number 3.
- 36. Oweis, R. J., &Abdulhay, E. W. "Seizure classification in EEG signals utilizing Hilbert-Huang transform". *Biomedical engineering online*, 2011,10(1), 38.
- 37. Ghongade Rajesh, GhatolA.A., "A Brief Performance Evaluation of ECG Feature Extraction Techniques for Artificial Neural Network Base Classification", *IEEE*, 2007.
- 38. Ramakrishna and SahaS., "ECG coding by wavelet based linear prediction", *IEEE Transactions on Biomedical Engineering*, Dec, 1997, vol.44, no. 12, pp. 1253-1261.
- 39. LegarretaRomero, PS Addison and N Grubb, "R-wave detection using continuous wavelet modulus maxima", *IEEE proceedings on Computers in Cardiology*, Feb 2003, Vol. 30, pp. 565-568.

- 40. MahmoodabadiS. Z., AhmadianA., AbolhassaniM. D., AlireazieJ. and BabynP., "ECG Arrhythmia Detection Using Fuzzy Classifiers", Fuzzy Information Processing Society. NAFIPS '07, *Annual Meeting of the North American*, (2007), pp. 48-53.
- 41. Sugiura, T. Hirata, H. Harada, Y. and Kazui, T., "Automatic discrimination of arrhythmia waveforms using fuzzy logic", *Proceedings of the 20th Annual International Conference of the IEEEEngineering in Medicine and Biology Society*, 1998,vol.20, no. 1.
- 42. Sun, Y., Chan, K. L., & Krishnan, S. M. "Arrhythmia detection and recognition in ECG signals using nonlinear techniques" *Ann. Biomed. Eng*,(2000), 28, 32-37.
- 43. Umit D. Ulusar, Govindan R.B., Member, IEEE, James D. Wilson, Curtis L. Lowery, Hubert Preissl, "Adaptive Rule Based Fetal QRS Complex Detection Using Hilbert Transform" 31st Annual International Conference of the IEEE EM Minneapolis, Minnesota, USA,2009, September 2-6,
- 44. Singh Vikramjit, Kaur Simranjeet ,Gupta Aditi "Comparative Study of ECG Signal Denoising and Rpeak Registration Methods" *International Journal of Engineering Research & Technology* (*IJERT*),2014,ISSN: 2278-0181 Vol. 3 Issue 6, June.
- 45. Zhu W., Zhao H. and Chen X., "A New QRS Detector Based on Empirical Mode Decomposition", *IEEE 10th International Conference on Signal Processing (ICSP)*, 2010, pp.-1757-1760
- 46. Xue, Q., Hu, Y. H., & Tompkins, W. J. "Neural-network-based adaptive matched filtering for QRS detection". *Biomedical Engineering, IEEE Transactions* on, (1992), 39(4), 317-329.
- 47. Yeh Y. C., et. Al., "A novel fuzzy c-means method for classifying heartbeat cases from ECG signals", *Measurement*,(2010) vol. 43, no. 10, , pp.1542–1555.
- 48. Yeh, Y. C., Wang, W. J., & Chiou, C. W. "Heartbeat case determination using fuzzy logic method on ECG signals" *International Journal of Fuzzy Systems*, (2009),11(4), 250-261.
